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Abstract. Constrained density-functional theory (CDFT) has been used by several authors
for determining model Hamiltonian parameters of high-Tc superconductors and other transition
metal compounds. These methods use the fact that the orbitals are well localized and can easily
be split into atomic components. We generalize them to systems with relatively delocalized
electrons, so that they can be used, for example, for determining parameters for a Hubbard
model of conducting polymers (e.g., polyacetylene). We selected the H2 molecule and a linear
C chain as test cases. The results of the constrained density-functional calculations were fitted
to Hartree–Fock model calculations of the Hubbard model. In the case of H2 we also fitted
the CDFT results to exact solutions of the Hubbard model. For H2 we found a substantial
discrepancy between theU -values from the exact and the Hartree–Fock model calculations,
which shows that it is important to specify the approximations that are used in determining
the model parameters. On the other hand, the CDFT calculations themselves lead to roughly
uniquely defined model parameters.

1. Introduction

Parameter-free studies of the electronic properties of specific materials are becoming of
increasing importance. Thereby larger and more complex systems as well as more properties
have become accessible withab initio methods based on the Hartree–Fock approximation
and improvements thereof as well as with density-functional methods. This development
has been mainly due to improvements in the computational schemes and their accuracy as
well as in the computer technologies.

Nevertheless, not all properties and systems can be treated within these approaches,
and in order to study theoretically those that are not directly accessible it is necessary to
apply simplified models. These models are constructed such that only those properties of
specific interest are treated accurately. For low-energy processes this amounts to studying
only the orbitals closest to the Fermi level explicitly, whereas the remaining part of the total
Hamiltonian is approximated as some simple form of the structure of the system.

To be more specific we study these properties by defining a model Hamiltonian for the
system of interest as

Ĥ = Ĥel+ Ĥnuc (1)

whereĤnuc depends only on the nuclear positions. In the present study we shall keep the
nuclear positions fixed, and we can thus setĤnuc equal to zero without loss of generality.
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As is common practice, we write that part of̂H that describes the electrons closest to the
Fermi level as

Ĥel = Ĥsp+ Ĥcorr (2)

with

Ĥsp= −
∑
i,j,σ

tij c
†
iσ cjσ (3)

being the single-particle part, and

Ĥcorr = 1

2

∑
i,j,k,l,σ,σ ′

Uijklc
†
jσ ′c

†
iσ ckσ clσ ′ (4)

being the many-body part.
Here i, j , k, and l are orbital indices, whereasσ andσ ′ are spin indices.c†iσ and ciσ

are creation and annihilation operators which belong to some spin orbitalϕiσ . We denote
the (position-space) orbital corresponding toϕiσ by ϕi . It is important to stress that the
precise form of the orthonormal functionsϕi is not specified but that they are assumed to
resemble atom-centred basis functions.

The Hamiltonian of equations (2)–(4) is the most general form. In the case in which only
the elementsUij ≡ Uijij are non-zero, we have a Pariser–Parr–Pople (PPP) Hamiltonian. If
only theUii ≡ Uiiii are non-zero, the Hubbard model results. Finally, if only thoseUij for
which i = j or i andj are nearest neighbours are non-zero, we have the extended Hubbard
model.

Once the parameterstij andUijkl (and in the general case also the precise form ofĤnuc)
are known, one can attempt to study the properties of interest using this Hamiltonian. The
advantage with these models is that, once a model for a given system has been defined, it
can be used in studying the ground state, excited states, neutral systems, charged systems,
and systems containing various kinds of symmetry reduction. One problem is, however, that
it is far from trivial to determine the parameters. Most often one is guided by a combination
of intuition and pieces of information from theoretical and experimental studies.

The approaches based on model Hamiltonians may be contrasted with parameter-
free methods for calculating properties of materials. These are almost always based on
expanding the single-particle eigenfunctions in some kinds of non-orthogonal and/or not-
atom-centred basis function, such that a separation of the eigenfunctions into atomic and
angular components becomes far from obvious. Furthermore, for a given system and
structure, only a few states are accessible, and for extended (infinite) systems that are
assumed periodic, it is not possible to treat charged systems exactly. This means that a
direct comparison between the results of parameter-free calculations and model calculations
is far from trivial, which in turn means that it is not obvious how to determine the parameters
tij andUij of the model Hamiltonian from the results of parameter-free calculations.

In the present study we will present a general method that allows us to determine the
parameters of the model Hamiltonian from parameter-free density-functional calculations.
The method is based on the constrained density-functional (CDFT) method originally
formulated by Dederichset al [1]. This approach allows one to modify the charge density
locally, whereupon the remaining part of the electron distribution will adjust to the new
distribution. It has been applied mainly to systems in which the orbitals of interest are well
localized and for which the density-functional method therefore allows for a direct separation
of the electron density into atomic and angular components. Such studies included the
original one of Dederichset al [1] who studied Ce impurities in Ag and Pd. Later, the
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CDFT method was used to study high-Tc superconductors [2, 3], the magnetic properties of
magnetite [4], and MX chains [5].

The method that we will propose is similar to those, but applies also to cases in which
the electrons are so delocalized that there is no natural separation into ‘atomic parts’, and
for which the parameter-free method applies basis sets that are better than minimal. It
is intimately related to the constrained density-functional method of Dederichset al [1],
which, for the sake of completeness, we briefly outline in section 2. The generalization
is described in section 3, where we also describe our density-functional method. We test
the method on the H2 molecule and a linear C chain. The H2 molecule is so small that
both approximate and exact calculations for the model can be carried through, whereas only
approximate studies can be performed for the C chain. The H2 molecule allows therefore
for an assessment of the consequences of incorporating various approximations in the model
studies. The details of how we treat the model Hamiltonians are given in section 4.

In section 5 we give the results of the CDFT calculations for our test systems, study the
variation of the model parameters when changing various internal parameters of the CDFT
calculations, and compare the results for the exact and for the Hartree–Fock solution of the
model Hamiltonians. Finally, section 6 contains our conclusions.

2. Constrained density-functional theory

Within the Born–Oppenheimer approximation and the density-functional formalism of
Hohenberg and Kohn [6], the total electronic energyE of the system of interest is a
functional of the electron densityρ:

E = E[ρ]. (5)

Unfortunately, its precise form is not known. Kohn and Sham showed [7] that the task of
minimizing E[ρ] variationally may be recast into that of solving the eigenvalue equations

ĥKSψm(r) = εmψm(r) (6)

where (in Rydberg atomic units)

ĥKS = −1+ V (r). (7)

HereV (r) is the sum of the Coulomb potentials of the electrons, that of the nuclei, and a
remainder. The latter is the so-called exchange–correlation potentialVxc. For Vxc we use
the local density approximation (LDA) in the form given by von Barth and Hedin [8], but
for the present discussion its precise form is not important.

The electron density is given by

ρ(r) =
occ∑
m=1

pm|ψm(r)|2 (8)

wherepm is the occupation ofψm, and where the sum runs over all occupied orbitals.
To arrive at constrained density-functional theory we follow an approach close to that of

Hybertsenet al [2]. We shall assume that we have somehow (to be specified in the following
section) defined a set of orthonormal basis functions that can each be ascribed to a certain
atom and(l, m) with the compound indexI describing this classification. Denoting any of
these functions bỹϕI , this means that for any normalized functionf (r) we can consider

P̂I f (r) = ϕ̃I (r)
∫
ϕ̃∗I (r

′)f (r′) dr′ (9)
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as that part off (r) that corresponds to the atom and angular dependence as specified byI .
The operatorP̂I = |ϕ̃I 〉〈ϕ̃I | is a projection operator. We require the functionsϕ̃I to resemble
those of our model Hamiltonian, but whereas we do not need to specify the precise spatial
dependence for the latter, we have to do that here.

In order to arrive at the constrained density-functional method, we notice that the
quantity

nI =
occ∑
m=1

pm〈ψm|P̂Iψm〉 (10)

is that part of the total number of electrons (equation (8)) that is ascribed to a given atom
and angular dependence as characterized byI .

When solving the Kohn–Sham equations (6) by expanding the functionψm in a set of
atom-centred basis functions with a given angular dependence, it will be desirable for the
functions ϕ̃I to resemble those. How this is achieved will be described in the following
section.

The constrained density-functional approach corresponds now to minimizing the
functional of equation (5), but with the additional constraints that for a certain subset of the
Is thenI have predefined valuesNI . These constraints can be incorporated via Lagrange
multipliers λI , and we thus seek the minimum

Ẽ({NI }) = min

{
E[ρ] +

∑
I

′
λI (nI −NI)+ µ

(∫
ρ(r) dr −Nel

)}
(11)

where the prime indicates that the constraints are only applied for a subset of theIs. In
equation (11) the usual constraint that the total number of electronsNel is conserved has
been included too as the last term on the right-hand side. Hereµ is the chemical potential.

Within the single-particle formulation of Kohn and Sham, the problem of solving
equation (11) can be recast into that of solving the modified Kohn–Sham equations(

ĥKS+
∑
I

′
λI P̂I

)
ψm = εmψm. (12)

In principle, for a given set{NI }, one arrives at a set{λI }. In any practical calculations, it
is however easier to specify{λI } and from the results of the calculation determine{NI }.

3. Implementing constrained density-functional theory

In a typical calculation, the eigenfunctions of equation (6) or (12) are expanded in some
set of basis functions. We shall here assume that they are atom centred (indexR), have a
specific angular dependence (indexL ≡ (l, m)), and that different functions with the same
R andL are distinguished through the indexκ. Thus, we write

ψi(r) =
∑
R,L,κ

ciRLκχRLκ(r). (13)

In our density-functional method (described in detail in [9]), the basis functions are
so-called linearized muffin-tin orbitals (LMTOs). They are defined as spherical Hankel
functions multiplied by spherical harmonics:

χRlmκ(r) = iκ(l+1)

(2l − 1)!!
h
(1)
l (κ|r −R|)Ylm

(
r −R
|r −R|

)
(14)

augmented continuously and differentiably inside non-overlapping atom-centred (muffin-tin)
spheres with numerically given functions; these are in turn obtained from equation (6) by
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replacing the potential with its spherically symmetric component. Thereby the functions
become good approximations to the exact solutions of equation (6). In a typical calculation,
the basis set consists of two subsets, each having s, p and d functions centred on all atomic
sites. These two subsets differ in the decay constantκ of the spherical Hankel functions. We
stress, however, that our general CDFT scheme can also be applied to other DFT methods
using a (not necessarily minimal) basis set of atom-centred functions.

The radii of the muffin-tin spheres are free (internal) parameters. Experience has
shown that calculations with different (reasonable) choices of these give similar results for
geometry optimizations, electron densities, etc. Our aim is to construct a constrained density-
functional method such that the results of these calculations become largely independent of
the sphere radii.

Within the LMTO–ASA method as applied by e.g. Hybertsenet al [2] and by Zhang and
Satpathy [4], one expands the muffin-tin spheres so that they become slightly overlapping
but such that their total volume equals that of the crystal. Furthermore, the basis set contains
only one function per atom andL. Thereby the basis functionsχ become approximately
orthonormal and can be chosen as the functionsϕ̃. However, for our basis set this approach
cannot be followed because we have a considerable number of valence electrons outside
the muffin-tin spheres (typically over 50%). Therefore it is desirable to have projection
operators extending over all space. Each projector should in addition correspond to one of
our basis functions (and therefore be centred at a certain atom), i.e., the functionϕ̃ should
resemble the basis functionχ as much as possible. This also means that requiring that the
results are insensitive to the sphere radii is a very strong requirement.

It is well known [10] that L̈owdin’s symmetric-orthogonalization scheme [11] provides a
set of orthonormal functions̃ϕI that resembles that of the original non-orthonormal functions
χI as much as possible if the least-squares norm is taken as a measure of the difference.
We shall therefore apply symmetric orthogonalization for defining orthogonal functionsϕ̃I
and the corresponding projectorŝPI .

The procedure for symmetric orthogonalization is as follows. The overlap matrix∆ of
the basis functions{χi} is diagonalized:

∆ = USU† (15)

whereS is a diagonal matrix containing the eigenvalues of∆, andU is a unitary matrix
whose columns are eigenvectors of∆. The matrix∆−1/2 is obtained via

∆−1/2 = US−1/2U† (16)

whereS−1/2 is the diagonal matrix which is obtained by replacing each diagonal element
SI of S by S−1/2

I . Lettingχ be the row vector of the original basis functions, the functions

ϕ̃ = χ∆−1/2 (17)

define a row vector̃ϕ of orthonormalized basis functions.
We shall use these functions in defining projection operators, and the constrained density-

functional equations then take the matrix form[
hKS+

∑
I

′
λIPI

]
cm = εm∆cm (18)

wherehKS and PI are the matrices of̂hKS and P̂I in the original basis of the{χI }, and
cm is a column vector containing the coefficients of themth eigenfunction in this basis.
The calculation ofhKS and ∆ for our method can be found in reference [9]. The matrix
elements for the projection operators are

〈χI1|P̂I |χI2〉 = 〈χI1|ϕ̃I 〉〈ϕ̃I |χI2〉 (19)
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with

〈ϕ̃I |χIi 〉 =
∑
J

(∆1/2)JIi 〈ϕ̃I |ϕ̃J 〉 = (∆1/2)IIi (20)

so we have

〈χI1|P̂I |χI2〉 = (∆1/2)∗II1
(∆1/2)II2. (21)

Thus, in order to include the constraints of equation (12), one does not actually have
to carry out the transformation of equation (17)—the necessary matrix elements can be
included via equation (21). It should be stressed in this context that in some cases the basis
set appears to be nearly linear dependent, with the result that the calculation of∆−1/2 is
numerically unstable. However, this is not the case for the calculation of∆1/2. We do,
however, have to eliminate near-linear dependencies from the basis set, because otherwise
the eigenvalue equation (18) becomes numerically unstable (this problem is not specific to
CDFT). This can be done via the canonical transformation of Löwdin [12], where those
linear combinations of the basis functions{χI } that correspond to the lowest eigenvalues
SI (i.e., those below a certain threshold) of the overlap matrix∆ are excluded. As we
found earlier for the unconstrained case, we found here that a reasonable variation of this
threshold does not affect the results in the CDFT calculations either.

Once the projection operators are defined, we can also calculate the populations of
equation (10). With our approach, they become the Löwdin populations

nI =
occ∑
m=1

pm|〈ϕ̃I |ψm〉|2 =
occ∑
m=1

pm

∣∣∣∣∑
J

cmJ 〈ϕ̃I |χJ 〉
∣∣∣∣2 = occ∑

m=1

pm

∣∣∣∣∑
J

cmJ (∆1/2)IJ

∣∣∣∣2. (22)

With this approach, we have now defined a set of orthonormal basis functions. To each
of those we can ascribe a certain atom as its site as well as an angular dependence. We
can thus vary its population in a more or less controlled way, and by including the extra
Hamilton matrix above withchosenλIs and by simultaneously calculating the populations
of equation (22) together with the total energy (for the present method this is described in
reference [9]), the functioñE of equation (11) can be defined and compared with the model
Hamiltonian, whereby the relevant model parameters can be determined.

It remains to be discussed how we take into account the fact that our LMTO basis set
is better than minimal. Since this depends strongly on the system of interest, it is best
discussed through a couple of examples.

For a H2 molecule, we may want to change the occupation of one atom with respect
to that of the other. If we place the molecule along thez-axis, the occupied orbital will
contain contributions from the s, pz, and dz2 functions for the two differentκs at each site.
Thus, changing the population of one atom will require that we change the sum of all of
those six populations. This is done by applying the same Lagrange multiplier to all six
populations.

For planar organic molecules or conjugated polymers lying in thexz-plane, one may
want to vary the number ofπ -electrons ascribed to a specific site. In this case the functions
with π -symmetry contain contributions from py , dyz, and dxy basis functions. Since we
have twoκs for eachL, there are six such functions for each atom, all of which will, in
this case, be treated with the same Lagrange multiplierλI .

In both cases the populations of interest are the sums of the sixnRLκs.
Since one of our test systems is the H2 molecule, we will discuss it in more detail,

thereby emphasizing some further points. Our procedure corresponds to defining the
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following two projection operators, one for each site (distinguished through their values
of i):

P̂i =
2∑
κ=1

(P̂Risκ + P̂Ripzκ + P̂Ridz2κ). (23)

In principle, the application of more than one projector with corresponding Lagrange
multipliers is not reasonable, since that corresponds to an overdetermination of the
populations. However, if we apply both projectors, we get

(ĥKS+ λ1P̂1+ λ2P̂2)ψ = εψ (24)

whereψ is the only occupied Kohn–Sham orbital (neglecting spin). This equation contains
one constraint too many, sinceN1 andN2 cannot be varied independently, but we have
P̂1 + P̂2 = 1̂σ , where 1̂σ is the projector to the space of all eigenfunctions withσ -
symmetry. Therefore equation (24) becomes

(ĥKS+ (λ1− λ2)P̂1+ λ21̂σ )ψ = εψ. (25)

The termλ21̂σ gives only a constant shift of the eigenvalues, and does not affect the Kohn–
Sham orbitalψ or the total energy (note that the total energy depends onψ alone; by using
ε—or, in the general case, the sum of eigenvalues of occupied orbitals—in the calculation
of the total energy, one has to make a correction if extra Lagrange multipliers are included
due to the extra constraints). Therefore the energy depends only on the differenceλ1− λ2.
If we replaceλ1− λ2 by λ′, equation (25) is equivalent to

(ĥKS+ λ′P̂1)ψ = εψ. (26)

If we also apply Lagrange multipliers to our model Hamiltonian (this is the case whether we
solve the model exactly or in the Hartree–Fock approximation; see below), the total energy
also depends only on the difference of the Lagrange multipliers. On the other hand, if we
were to define our projectors such that only the s orbitals would be involved (this would
mean truncating the right-hand side of equation (23) after the termsP̂Risκ ), the total energy
would not depend onλ1− λ2 alone. Thus, our choice of Lagrange multipliers is consistent
with the model Hamiltonian.

4. Model calculations

4.1. The H2 molecule

Due to its simplicity, the H2 molecule is an excellent system on which to test new
approaches, and therefore we will study it first. Neglecting spin, we construct a model
based on two orthonormal basis functionsϕ1 andϕ2, one per atom. The position-space part
of the general two-electron wavefunction9 for a singlet state is then spanned by the three
functions

80(r1, r2) = 1√
2
(ϕ1(r1)ϕ2(r2)+ ϕ2(r1)ϕ1(r2))

81(r1, r2) = ϕ1(r1)ϕ1(r2) (27)

82(r1, r2) = ϕ2(r1)ϕ2(r2)

i.e.

9 = c080+ c181+ c282. (28)
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c0, c1, and c2 are determined by diagonalizing the following Hamilton matrix, which
is the matrix representation of the Hamilton operator of equations (2)–(4) in the basis
(80,81,82):

H =
−2t11+ U1212+ U1221 −t12

√
2+ U1112

√
2 −t12

√
2+ U1112

√
2

−t12

√
2+ U1112

√
2 −2t11+ U1111 U1122

−t√2+ U1112

√
2 U1122 −2t11+ U1111

 . (29)

We let the energy zero be at

− 2t11+ U1212+ U1221= 0 (30)

and introduce

U ≡ U1111− U1212− U1221

t ≡ t12.
(31)

Furthermore, we assume that

U1112= U1122= 0. (32)

Then

H =
( 0 −t√2 −t√2
−t√2 U 0
−t√2 0 U

)
. (33)

As discussed in section 3, the number of electrons that is ascribed to atom 1 can
be controlled by adding the termλ1n̂1 to the Hamilton operator, which produces the
(constrained) Hamilton matrix

Hc =
(

λ1 −√2t −√2t
−√2t U + 2λ1 0
−√2t 0 U

)
. (34)

The eigenvectorc = (c0, c1, c2)
T for the lowest eigenvalue ofHc leads to the total energy

Etot = c†Hc = −2
√

2t Re(c0(c1+ c2))+ U(|c1|2+ |c2|2) (35)

and the populations

n1 = |c0|2+ 2|c1|2 = 1+ |c1|2− |c2|2
n2 = |c0|2+ 2|c2|2 = 1+ |c2|2− |c1|2

(36)

on using|c0|2+ |c1|2+ |c2|2 = 1.
So far, we have studied the exact solution to the model. Within the Hartree–Fock

approximation, equation (28) is replaced by

9 = ψ(r1)ψ(r2) (37)

with

ψ(r) = a1φ1(r)+ a2φ2(r). (38)

This corresponds to

c0 =
√

2a1a2

c1 = a2
1

c2 = a2
2.

(39)
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Without loss of generality, we can chosec0, c1, andc2 in equation (28) real. By normal-
ization, we then have

c0 = ±
√

1− c2
1 − c2

2. (40)

The two signs correspond to two different wavefunctions that forc1 = −c2 become ener-
getically degenerate.

Figure 1. Contour plots of the lowest total energy for the H2 molecule as a function ofc1, c2

for different values ofU/t , i.e. (a)U/t = 0.2, (b) U/t = 1.0, and (c)U/t = 5.0. The full
curves are contour plots for the total energies at equidistant energies between the minimum
(−1.9025t in (a),−1.5616t in (b), and−0.7016t in (c); the two equivalent minima are placed
along thec1 = c2 diagonal) and the maximum (i.e.U ; this occurs forc2

1+ c2
2 = 1). The straight

lines between(0, 1) and(1, 0) and between(−1, 0) and(0,−1) correspond to the Hartree–Fock
wavefunctions. The dashed lines are contours for1n of equation (41) for nine values equidistant
between 0 and 1.

From equation (40), the lowestEtot of equation (35) becomes a function of(c1, c2).
Contour plots of this function are shown in figure 1, together with contour plots of the
difference in occupation of the two atoms:

1n = |c2
1 − c2

2|. (41)

Within the Hartree–Fock approximation, it follows from equation (39) and from the
normalization ofψ (i.e., a2

1 + a2
2 = 1) that the range of the constrained Hartree–Fock

solution corresponds toc1+ c2 = ±1, with 06 |c1|, |c2| 6 1.
The corresponding straight lines are depicted in figure 1. The Hartree–Fock approx-

imation assumes thatc1 andc2 are to lie on these lines and that the energy minimum is at
c1 = c2 = ±0.5. From figure 1 we see that this is only realistic ifU/t � 1.

4.2. Hartree–Fock calculations for linear C chains

Ultimately we intend to apply our method to conjugated polymers. These are quasi-one-
dimensional materials which have a planar backbone of sp2-bonded carbon atoms with the
last valence electron per carbon atom occupyingπ -orbitals perpendicular to the plane of the
backbone. Theπ -orbitals are the frontier orbitals, and are those of relevance when studying
low-energy excitations. A Peierls distortion can be held responsible for the occurrence of
alternating longer (double) and larger (single) bonds.

A linear carbon chain is the simplest possible model system resembling the conjugated
polymers. It has two (and not one)π -orbitals per carbon atom and theσ -bonds are formed
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by sp (and not sp2) hybrids. But, as above, the frontier orbitals are defined by theπ -orbitals,
and the ground state for the neutral chain has alternating shorter (triple) and longer (single)
bonds.

Assuming that there is no interaction between the twoπ -systems, the simplest many-
body Hamiltonian for this system is the Hubbard Hamiltonian for eachπ -system:

Ĥ =
∑
i,σ

εciσ c
†
iσ −

∑
i,σ

ti,i+1(c
†
iσ ci+1,σ + ci+1,σ ci)+

∑
i

Uc
†
i↑ci↑c

†
i↓ci↓ (42)

where the hopping integralsti,i+1 alternate betweent1 and t2 for the shorter and longer
bonds, respectively.

We justify the omission of interactions between the two sets ofπ -electrons as follows.
The simplest model corresponds to a constant repulsionŨ between different spin orbitals
of p type centred on a given atom. We thereby obtain (r discriminates between the px and
the py orbital)∑
σ 6=σ ′ or r 6=r ′

1

2
Ũc
†
iσ rciσ rc

†
iσ ′r ′ciσ ′r ′ ≈

∑
σ 6=σ ′ or r 6=r ′

Ũ〈c†iσ rciσ r〉c†iσ ′r ′ciσ ′r ′ = 3
∑
σ ′r ′

Ũmic
†
iσ ′r ′ciσ ′r ′

(43)

with

mi = 〈c†iσ rciσ r〉 (44)

being independent ofr andσ .
The result in equation (43) is three times the result that we would get if there was no

repulsion between the px and py functions for the same atoms. Therefore the model with
repulsion between the px and py orbitals can be approximated by a model with no repulsion
and an effectiveU = 3Ũ . The approximation that we have made is that we neglected the
off-diagonal terms (like〈c†iσ rciσ r ′ 〉c†iσ r ′ciσr , for r 6= r ′). However, it should be stressed that
our main goal is to demonstrate the performance of the CDFT approach and not to study
the Hubbard model in detail. Therefore, we consider the question of the exact justification
of our Hubbard model less relevant.

In the constrained density-functional calculations, we consider chains of periodically
repeated units of four C atoms, and accordingly modify the populations of every fourth
atom identically.

Applying Born–von Ḱarmán boundary conditions to a dimerized chain with four atoms
per unit cell andN unit cells, whereN > 3, the Fock matrix (with Lagrange multipliers
λi) can be written as a cyclic hypermatrix of dimensionN ×N of the form

Fc =



A B 0 0 . . . 0 0 B†

B† A B 0 . . . 0 0 0
0 B† A B . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . B† A B
B 0 0 0 . . . 0 B† A

 (45)

with

A =


ε + λ1 −t1 0 0
−t1 ε + λ2 −t2 0
0 −t2 ε + λ3 −t1
0 0 −t1 ε + λ4

+G (46)
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and

B =


0 0 0 0
0 0 0 0
0 0 0 0
−t2 0 0 0

 . (47)

G is a diagonal matrix, which stems from the two-electron interactions. The calculation of
G is described below (equation (51)). The cyclic hypermatrixFc can be block diagonalized
with the help of the hypermatrixU, given by

Ukl = 1√
N

e2π i(k−1)(l−1)/N I (48)

whereI is the 4× 4 unit matrix.
The kth diagonal blockF̃k of the matrixU†FcU is then given by

F̃k = A + Be2π i(k−1)/N + B†e2π i(k−1)(N−1)/N = A + Be2π i(k−1)/N + B†e−2π i(k−1)/N . (49)

In our calculations, we determine the eigenvectorsckj of the matricesF̃k as functions
of k. Assuming that for eachk there arenocc occupied orbitals (in our casenocc = 2), we
obtain the density matrices

Rk =
nocc∑
j=1

ckjc
†
kj . (50)

From these we can calculate the elements of the diagonal matrixG via

Gii = U

N

N∑
k=1

Rkii . (51)

We start with an initial guess for the density matricesRk, which allows us to calculate
the block-diagonalized Fock matricesF̃k. This gives in turn a new set of density matrices.
This procedure is repeated until self-consistency is achieved. To avoid oscillations we had
to apply a feedback procedure for the density matrices.

For an undimerized C chain in the absence of Lagrange multipliers, the HOMO is
degenerate with the LUMO for the firstk-point. This may easily lead to oscillations.
Although the degeneracy is lifted as Lagrange multipliers are included, the corresponding
calculations may oscillate too. We therefore introduced a broadening for nearly degenerate
orbitals, whereby equation (50) is replaced by

Rk =
nocc−1∑
j=1

ckjc
†
kj + (1− w(1ε))ck,noccc

†
k,nocc
+ w(1ε)ck,nocc+1c

†
k,nocc+1. (52)

1ε is the difference in energy between the LUMO and the HOMO of thek-point in question.
We choosew such thatw(0) = 0.5; w is decreasing linearly up to the threshold value
1εtrs = 0.001 Ryd, for and above whichw(1ε) is 0.

As soon as self-consistency is achieved, the population of theith atom can be calculated
as

Ni = 4

N

N∑
k=1

Rkii . (53)

The factor 4 arises because there are two perpendicularπ -systems each having 2nocc

electrons per unit cell. The total energy is calculated from the expectation value of the
matrix H, which is defined as the Fock matrixFc of equation (45) except that the matrix
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G of equation (46) is replaced by12G and that allλi are set to 0. Block diagonalization of

H leads to diagonal blocks̃Hk, and the total energy, normed to 4nocc electrons, is finally
given by

Etot = 4

N

N∑
k=1

Tr{RkH̃k}. (54)

In contrast to the case for H2, we are not able to obtain exact solutions for the C chain.
As we shall see, our results for H2 raise some doubts about whether the Hartree–Fock
approximation is justified. However, in the present work the focus is not on obtaining
accurate eigensolutions to the model Hamiltonian, but on demonstrating that constrained
density-functional calculations can provide parameter values that depend only weakly on
internal parameters (e.g. sphere sizes for the muffin-tin orbitals) of the density-functional
calculations, even for more delocalized electrons. We therefore consider our approach to
be acceptable here.

5. Results

5.1. Results for the H2 molecule

In the density-functional calculations for the H2 molecule, we used a H–H bond length
of 1.40 au and considered muffin-tin sphere radii of 0.5, 0.6, and 0.7 au. In the absence
of Lagrange multipliers this corresponds to having only 0.11, 0.17, and 0.24 electrons,
respectively, inside each of the two muffin-tin spheres. The Lagrange multipliers were set
equal to 0,±0.05,±0.1, ±0.15,±0.2, ±0.25, and±0.30 Ryd.

The resultingEtot as a function of1n1 was subsequently approximated through the first
terms in a Taylor expansion:

Etot = E0+ b1n2
1. (55)

Least-squares fits for the three sets of calculations to equation (55) led tob = 1.924,
1.940, and 2.141 Ryd, respectively, for the three sphere radii. It is very important to note
thatb is fairly independent (within 6% from the mean value) of the muffin-tin sphere radii.
This is a far from trivial finding, since a very large proportion of the electrons are in the
interstitial region, so a separation into atomic components is not obvious.

In order to determine the parameters of the model, we performed model calculations with
the same set of Lagrange multipliers. However, determining bothU and t requires more
information than the constrained density-functional calculations provide. We use therefore
in addition the experimental value of the optical gap (1Egap= 0.8220 Ryd [13]), which is
the energy of the lowest16u state relative to the ground state.

The optical gap for the model calculations is given by the difference of the two lowest
eigenvalues of the Hamilton matrixH defined in equation (33), i.e.

1Egap= U −
U −

√
U2+ 16t2

2
(56)

or

U = 1E2
gap− 4t2

1Egap
. (57)

Within the Hartree–Fock approximation, one may use1Egap = 2t by taking the diff-
erence between the Hartree–Fock eigenvalues corresponding to the excited and the lowest
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one-electron orbitals. Note that this will lead to different values oft in the Hartree–Fock
and the exact calculations. For the sake of comparison, we therefore performed calculations
with the same values oft for the exact and the Hartree–Fock calculations.

We followed accordingly three different approaches for obtaining the model parameters
from the results of the constrained density-functional calculations.

(i) Exact calculations varying botht andU according to equation (57).
(ii) Fixing t = 0.133 Ryd (which is the value from (i) for a muffin-tin radius of 0.6 au)

and performing both exact and Hartree–Fock calculations.
(iii) Fixing t = 0.411 Ryd, which is half the optical gap (and thus the appropriate choice

for Hartree–Fock calculations), and performing both exact and Hartree–Fock calculations.

The results of (i) are given in table 1, whereas the results of (ii) and (iii) are given in
table 2. Figures 2 and 3 show the results of the constrained density-functional calculations
at rMTS = 0.6 au, and the corresponding exact and Hartree–Fock calculations witht = 0.133
and t = 0.411 Ryd, respectively.

Table 1. Results of fitting the constrained density-functional calculations to exact solutions of
the Hubbard model for the H2 molecule. All quantities are given in Rydberg atomic units.rMTS

is the radius of the muffin-tin spheres in the constrained density-functional calculations, and
‘Curvature’ is the curvature of1Etot versus1n1; cf. equation (55).

rMTS: 0.5 0.6 0.7

Curvature 1.924 1.940 2.141
t 0.134 0.133 0.126
U 0.735 0.735 0.745

Table 2. The HubbardU for the H2 molecule obtained by fitting the curvatures of constrained
density-functional calculations to model calculations at two values of the hopping integralt .
Uex andUHF are the values ofU for exact and Hartree–Fock calculations, respectively. All of
the quantities are given in Rydberg atomic units.rMTS is the radius of the muffin-tin spheres,
and ‘Curvature’ is the curvature of1Etot versus1n1; cf. equation (55)

rMTS: 0.5 0.6 0.7
Curvature: 1.924 1.940 2.141

t Uex UHF Uex UHF Uex UHF

0.133 0.733 3.581 0.735 3.612 0.766 4.014
0.411 1.199 3.025 1.193 3.057 1.277 3.458

As can be seen from table 1,t and U for the exact calculations vary only little,
indicating that our constrained density-functional approach is stable against variations in
the computational details. From table 2 we learn also that fixingt may lead to other values
of U , but that these are also stable. On the other hand, the Hartree–Fock calculations
lead to markedly different values ofU . This is, however, a problem of the Hartree–Fock
approximation to the model and not of the constrained density-functional method, as can
be seen in figure 1.

According to table 1,U/t ≈ 5. Figure 1 shows that for the ground state,c1 = c2 ≈ 0.2.
Changingn1 (adding the constraints) corresponds to moving away fromc1 = c2. The
system will respond to this change by finding that pair(c1, c2) that leads to the smallest
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Figure 2. Results of constrained density-functional calculations for H2 (rMTS = 0.6 Bohr)
and corresponding fitted parabolas for exact and Hartree–Fock calculations witht = 0.133 Ryd.
Note that the dashed parabola is the least-squares fit to the exact calculations, whereas the curves
for the constrained density-functional data and for the Hartree–Fock calculations coincide.

Figure 3. Results of constrained density-functional calculations for H2 (rMTS = 0.6 Bohr) and
corresponding parabolas for exact and Hartree–Fock calculations witht = 0.411 Ryd.

change in total energy for a given change inn1. From figure 1 we see that this is found
upon shifting(c1, c2) away from(0.2, 0.2) towards either(1, 0) or (0, 1).

The Hartree–Fock approximation assumes that the ground state occurs forc1 = c2 = 0.5,
which is only valid forU/t � 1; cf. figure 1. This means that it is assumed that the changes
in Etot andn1 follow the same patterns as that of figure 1(a). In that figure,Etot changes
more slowly on changingn1 than in figure 1(c). Thus for a given set of(1Etot,1n1), U has
to be treated as much larger than it actually is, in order to describe the change correctly. This
explains the difference between the exact and the Hartree–Fock results. It also demonstrates
that the Hartree–Fock approximation may not be very good whenU becomes comparable
to or larger thant .
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From figures 2 and 3, we see that the constrained density-functional calculations lead
not only to approximately the same curvatures but also to sets of points lying on roughly
the same curve. We see also that both the exact model and the Hartree–Fock approximation
are able to fit the major points of the constrained density-functional results, except the exact
calculations for the largest1n1.

Figure 4. Band structures of a dimerized C chain from (left) the density-functional calculations
and (right) the tight-binding fit. The dashed line marks the Fermi level in the DFT band structure.

5.2. Results for linear C chains

For the linear carbon chain we considered both undimerized and dimerized structures,
i.e. chains with not-alternating and alternating bond lengths. The CDFT calculations for
the dimerized C chain were carried through on systems containing repeated units of four
atoms, and the bond lengths were set equal to 2.375 and 2.70 au [14], whereas we used the
arithmetic mean (2.5375 au) for the undimerized chain.

As the radius for the muffin-tin spheres, we usedrMTS = 1.187 au, which means that
for the dimerized chain along the shorter bonds the muffin-tin spheres almost touch. We
applied Lagrange multipliers to theπ -functions of one atom (the second atom in the unit
cell) in four, and their values were 0,±0.025,±0.05,±0.075,±0.100, and±0.125 Ryd.
In our calculations we used sevenk-points, the first and last being at the centre and the edge
of the Brillouin zone, and the rest being equidistantly distributed. With Born–von Kármán
boundary conditions, the sevenk-points correspond to a cyclic system withN = 12 unit
cells. We stress however that in our CDFT program we do not use Born–von Kármán
boundary conditions, but consider an infinite chain. On the other hand, in our model
calculations we usedN = 12. We checked that enlargingN did not change the results for
the dimerized C chain. For the undimerized C chain, the curvatures were 6% higher for
N = 288 (which we consider converged) than forN = 12.
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In order to analyse our results, we define a total population shift1Ntot via

1Ntot = sgn(1N2)

√√√√ 4∑
i=1

1N2
i (58)

where1Ni is the population shift of theith atom.
Our calculations showed that it was crucial that the Coulomb summations were carried

through to much higher precision than is necessary in conventional (unconstrained) DFT
calculations. If the range for the Coulomb summations is too small (in an actual calculation,
a cut-off distance of 50 au turned out to be too small, whereas a distance above 60 au was
sufficiently large), the plots of1Etot versus1Ntot become asymmetric, and the lowest total
energy is not at1Ntot = 0.

We studied the consequences of varying various internal parameters, such as the radii
of the muffin-tin spheres, and the ranges of lattice summations other than the Coulomb
summations. In all cases, our data points varied only little. The same was true when
enlarging the range of Coulomb summations to over 70 au.

We first discuss the results for the dimerized chain. In order to perform HF model
calculations, we fitted the band structures from the calculation with the Lagrange multipliers
equal to 0 with those of a tight-binding model. This model is obtained from the HF model
discussed in section 4.2 upon setting the matrixG of equation (51) to 0. The band structures
of the density-functional calculation and of the tight-binding fit are shown in figure 4, and
the fitted parameter values wereε = −0.580 Ryd,t1 = 0.159 Ryd,t2 = 0.145 Ryd.

The bands of the HF calculations in the absence of Lagrange multipliers are shifted
by U/2 with respect to the bands of the tight-binding model. Therefore our tight-binding
parameters remain valid except thatε has to be replaced byε − U/2. This constant shift
can be neglected, since it has no effect on1Etot as a function of1Ntot.

Figure 5. Results of constrained density-functional calculations for a dimerized C chain, and
the corresponding parabola from the Hartree–Fock fit.

Our CDFT calculations result in the curve of figure 5. A least-squares fit of the form
1Etot = a + b1N2

tot leads tob = 0.2953 Ryd, from which we obtainedU = 1.840 Ryd.
This curve is also shown in figure 5. It can be seen that on the left-hand side of the
plot, the HF results are very close to the CDFT data points, whereas on the right-hand
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Figure 6. As figure 4, but for an undimerized C chain.

Figure 7. As figure 5, but for an undimerized C chain.

side, the data points differ, although the deviations are only small. For an undimerized C
chain, the tight-binding fit of the band structures yieldedε = −0.563, andt = 0.163 Ryd
(cf. figure 6). The curvatureb of the (1Ntot,1Etot) curve (figure 7) was 2.2582, which
leads toU = 1.671 Ryd. In figure 7 we see that the fitted total-energy curve has a non-
vanishing offset. This may be due to the fact that the undimerized C chain is metallic, so
the Hubbard model with its implicit assumption of strong screening is an unrealistic starting
point.
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6. Conclusions

In the present work we have concentrated on presenting a generalization of the constrained
density-functional methods. Such methods are applied in order to determine parameters for
many-particle models from first-principles calculations, but have so far been applicable only
for systems with strongly localized electrons and when the first-principles calculations have
been performed with an essentially minimal basis set. Our approach allows for calculating
these parameters also for systems with considerably less localized electrons and when the
basis set is better than minimal.

The central point was that of transforming the original basis set of non-orthonormal
functions into one of orthonormal functions that both resemble the original functions to
a large extent and are so constructed that the final results depend only marginally on the
calculational details of the density-functional calculations. To this end, we found that
the symmetric-orthonormalization scheme of Löwdin provides the optimal methodology,
whereby both (i) constraints fixing the number of electrons of specific atoms and(l, m) and
(ii) the related populations were well defined.

A number of test calculations on the H2 molecule showed that the results were stable
against variations of the internal parameters of the density-functional calculations, whereby
it turned out that the sizes of the muffin-tin spheres were the most critical quantities.
The parameter values of the many-body model Hamiltonian can only be obtained by
comparing the results of the constrained density-functional calculations with those of model
calculations. For the H2 molecule we could compare different ways of carrying the model
calculations through, i.e., a so-called exact method and a Hartree–Fock method. We found
that the results depended strongly on which method was used, and, in particular for large
values ofU , strong deviations were observed. This implies that whenever model parameters
are determined with constrained density-functional calculations, it is important to specify
how the accompanying model calculations have been performed and that the same approach
is used in later applications of the model.

For the linear carbon chains, we studied the model only within the Hartree–Fock
approximation. The fact thatU was found to be large indicates that this approximation
may not be fully justified. Our results for the H2 molecule indicate that more exact model
calculations would lead to a smaller value ofU .

For the extended, quasi-one-dimensional systems,U/4t (i.e., the strength of the many-
body interactions over the total bandwidth) is of fundamental importance. For the carbon
chains, we found values of around 2.5–3.2. (ForŨ = U/3 of equation (43), these values
are accordingly around 0.8–1.1.) We are not aware of any other estimates of this quantity
for the carbon chains, but it is useful to compare the values with those that are considered
realistic for the prototypical conjugated polymer,trans-polyacetylene. According to page 60
of Baeriswyl et al [15], a reasonable parameter range is 1.5t0 < U < 3.5t0, where t0 is
something like a mean hopping integral. This results in 0.4 < U/4t0 < 0.9. However,
in contrast to our study, that of Baeriswylet al also considered the nearest-neighbour
repulsionV , for which they regard as a reasonable range 0.5t0 < V < 1.5t0. Therefore,
for comparison with our values, we should use an effectiveUeff = U − V . This leads to
0 < Ueff < 3t0, and 0< Ueff/4t0 < 0.8. Therefore our values forU/4t and even forŨ/4t
for the C chains are rather high, which could be due to the Hartree–Fock approximation
that we have used in determiningU .

In conclusion, we stress that our aim has been to provide a scheme that allows for a
first-principles determination of parameter values for many-body model Hamiltonians for
relatively delocalized electrons, and not to provide exact results for our test systems. Our
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results show that we have achieved this goal, and that our results are as independent of the
computational details as one can hope for.
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